Inside every human cell, 2 meters of DNA is crammed into a nucleus that is only one-hundredth of a millimeter in diameter.
To fit inside that tiny space, the genome must fold into a complex structure known as chromatin, made up of DNA and proteins. The structure of that chromatin, in turn, helps to determine which of the genes will be expressed in a given cell. Neurons, skin cells, and immune cells each express different genes depending on which of their genes are accessible to be transcribed.
Deciphering those structures experimentally is a time-consuming process, making it difficult to compare the 3D genome structures found in different cell types. MIT Professor Bin Zhang is taking a computational approach to this challenge, using computer simulations and generative artificial intelligence to determine these structures.